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CADMIC—Computer-Aided Design of Microwave
Integrated Circuits

EDGAR SANCHEZ-SINENCIO, STUDENT MEMBER, IEEE, AND TIMOTHY N. TRICK, MEMBER, IEEE

Abstract—A computer program for the analysis and design of dis-
tributed lumped circuits, including microwave integrated circuits, is
discussed. It is capable of frequency-domain analysis, optimization
of transducer power gain, reflection coefficient, and /or noise figure.
Also, the program can compute the return difference with respect to
any admittance parameter so that the stability of the circuit can be
determined by the Nyquist criterion. The program handles complex
impedances, resistors, capacitors, inductors, transmission lines,
independent current sources and grounded voltage sources, voltage-~
controlled current sources, and multiport elements, such as transis-
tors and circulators, described by their scattering or admittance
parameters. It contains a free-format input. The implementation
is based on the indefinite admittance matrix, sparse matrices, ad-
joint networks, the Fletcher~Powell or Fletcher minimization al-
gorithm, and Bode’s feedback theory.

INTRODUCTION

N the past five years several general-purpose microwave
ac analysis programs have been developed. Most of
these programs [1]-[8] use transfer-matrix analysis
techniques which work well for ecascade network connec-
tions. Some of these programs include modifications to
handle other special topologies [3}-[8], such as series and
parallel connections, but the number of complex multi-
plications required per two-port section increases from 4
in the cascade case, using A BCD parameters, to approxi-
mately 50, in the case when the two-ports are described
by their scattering parameters and connected in parallel
[87]. Also, the input data for the description of the network
topology increase in complexity. Other programs use a
general port formulation [47], [8] or an indefinite admit-
tance matrix formulation [97], [10] to handle general
network structures. In the admittance formulation, the
description of the circuit topology is simple; however, the
analysis can be very time consuming since the inversion
of a large matrix is required at each frequency and the
number of complex multiplications is approximately N3/3
where N -+ 1 is the number of nodes in the circuit. Recent
studies [217] indicate that the use of sparse-matrix algo-
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rithms in the analysis of 20-30 node networks can reduce
this operations count to between 4N and 16N, The trans-
fer-matrix analysis of a cascade of N two-port networks
requires approximately 4N operations. The admittance
matrix of the cascaded network is banded with a band-
width of 3. Hence, the operations count using sparse
techniques will also be approximately 4N [227]. Thus
sparse techniques can even be competitive in the case
of special structures. However, for a given network topol-
ogy, sparse techniques initially require additional central-
processing-unit time to order the network nodes to
minimize fill-in and to generate the elimination code, but
this need be done only once for a given network structure
and if many analyses are required, this time becomes
insignificant in comparison with the total.

Finally, only a few of the above programs include
optimization. A recent study [11] indicates that the
Fletcher-Powell [127] or new Fletcher algorithm [13]
are superior to other types of optimization techniques.
These algorithms require the caleulation of a gradient. The
adjoint network is the most efficient approach for the
computation of the gradient of a particular response with
respect to two or more parameters in the circuit [ 14 ]-[16].
None of the above programs utilize both of these results.
Finally, the stability of the circuit is crucial, yet it is
frequently neglected. When stability is considered in the
above programs, the stability criterion is based on the real
part of the input impedance [17], [18]. This criterion
can lead to incorrect conclusions as will be illustrated later.

Motivated by sparse-matrix techniques [197-[21] and
the adjoint network approach for computing the gradient
of a given performance index, the computer program
capmic was developed. capmic performs ac analysis and
optimization of the transducer power gain, noise figure,
and/or reflection coefficient, and checks the stability of the
circuit by means of the Nyquist criterion and Bode’s
return difference. It handles any circuit topology with
distributed, lumped, and active elements.

AC AnNavrysis

The indefinite admittance matrix is the basis for
the formulation of the network equations in capmIc.
The allowable two-terminal elements are resistors,
capacitors, inductors, lossless, shorted, or open stubs,
or any two-terminal element whose impedance is spec-
ified at each frequency of the analysis. In addition,
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the program allows for the specification of voltage-con-
trolled current sources, lossless transmission lines, and
any three-terminal elements whose scattering or admit-
tance parameters are specified at each frequency of the
analysis. Thus small-signal parameters for transistors,
circulators, and other devices can be read into the pro-
gram. The scattering or admittance parameters of the
three-terminal device must be measured with respect to
a common terminal. The scattering parameters must be
converted to admittance parameters and the admittance
parameters are added to the indefinite admittance matrix.
The nodes of the circuit are numbered consecutively from
O to N where O denotes the ground node and N is the
total number of nodes excluding the ground node.

The method employed by capmic to calculate the node
voltages 1s essentially Gaussian elimination [227]. How-
ever, in order to minimize the number of operations, a
sparse-matrix routine similar to that described by Jenkins
and Fan [23] is utilized. Storage is minimized by storing
only the nonzero entries in the admittance matrix in
vector form. Only the diagonal elements are used as pivots
in the forward elimination and the nodes are reordered
in order to reduce fill-in. Basically, the Markowitz [19]
criterion is used to reorder the nodes since it is easier to
employ and seems to be almost as effective in the admit-
tance formulation as more complicated reordering schemes
which minimize the local fill-in [197, [21]. The nodes of
the indefinite admittance matrix are reordered as follows.
The ground node is placed in the last row. The next N,
rows from the bottom denote the grounded voltage source
nodes, and the first L = N — N, rows are ordered in
ascending order with the row with the least number of
nonzero elements first, etc. The ordered indefinite admit-
tance matrix is illustrated in (1) :

N_‘Nv{ YLLEYLSE

Y = Nv{ YsLEYssE

(1)
O{ Yng Ygs E Yﬂy‘

Only nonzero elements are stored and nonzero operations
are carried out in the solution of the equation

YLLVL = IL - YLsVs (2)

where I denotes the independent current sources con-
nected to the first L nodes (reordered), V., denotes the
grounded independent voltage sources, and V; denotes
the unknown node voltages at the first L nodes (reor-
dered). The matrix ¥, is decomposed into a lower tri-
angular matrix L and an upper triangular matrix U such
that

Yi = LU. (3)

The equation

LUV, = I, (4)

where I, = I, — Y.V, is solved by forward and back-
ward substitution [227].
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OPTIMIZATION

In addition to analysis, the user can request an optimiza-
tion of specified parameters to approximate a desired
performance of the circuit. The error function is specified
as

e = -2 W(iw)o(jw)l?, €@ (5)
Q

B[ -

where e is the error function which is to be minimized,
W (jo) is a nonnegative weighting function, p > 1 is an
integer, 0 is the difference between the desired response
and the actual response at the frequency w, and Q is a set
of discrete frequencies specified by the user. The desired
response can be specified as the transducer gain of a tran-
sistor or negative resistance amplifier, the reflection
coefficient, or the noise figure of an amplifier. In most
microwave optimization programs the function e is mini-
mized by means of direct search algorithms [17], [2], [24].
However, a recent study [117] indicates that gradient-based
algorithms are superior. Thus in capmic the function e is
minimized by the Fletcher-Powell [12] or the new Fletcher
[13] algorithm which require the computation of the
gradient of e with respect to the set of adjustable param-
eters @ in the circuit. For a given adjustable parameter
gi: € @ we note that

"f = ZRe {W(jw) 16 (jeo) = (0* g)} ©®

aq; i
Below we show that 8 can be expressed as a function of a
particular response voltage V which depends on the de-
sired performance function. Thus we need to compute
9V /dq: at each frequeney w € @ and for each adjustable
parameter ¢, in the set . For example, in the case of the
design for optimal transducer power gain

0(jw) & Gr(jo) — Gr¢(jw) (7)
where
. | Vo2
Gr(jo) = 4R.GL, [Vl

Vi is the generator voltage and R, is the real part of the
generator impedance at the frequency «; V, is the voltage
across the load and G, is the real part of the admittance
of the load, and Gr? is the desired transducer power gain
specified at each frequency w € Q. Thus (6) becomes

Ve = Zﬂ: Re {W(J'w) |Gr(jw) — Gr?(jw) |7~2(Gr (jw)

. Vo* aVo}
— Gr(jw))8RGy —— 2
#(je) SRGy s (®)

where * denotes the complex conjugate and
o _[o5e... o]

and n denotes the number of adjustable parameters.



SANCHEZ-SINENCIO AND TRICK: CADMIC—DESIGN OF MICROWAVE IC’S

Other types of error functions may be easily imple-
mented if (5) is not satisfactory, e.g., the least pth ap-
proximation suggested by Bandler [257].

Finally, let us illustrate the ease in which the gradient
of e in (8) can be computed. In order to calculate 9V /dq,
where V is a specified response for each ¢; € Q, 1 =
1,2,- - -n, we use the adjoint network method [14-[167].
The adjoint network has the same topology as the original
network except its admittance matrix is Y7 where super-
seript 7' denotes the transpose operation. In the case where
dV /aq is desired, where g denotes the vector of adjustable
parameters, then the independent sources are set to zero
in the adjoint network and a 1-A current source is con-
nected to the response terminals. In order to find the
solution of the adjoint circuit, we must solve the equation

YLLTVLa = qua
or

(Vi)Y = (I M7 (9)

Since we already have the LU decomposition of Y., from
(4), the solution of (9) simply requires a special sub-
routine for the forward and backward substitution. The
sengitivity of V with respect to any element in the circuit
can be computed from the knowledge of V; and V¢ as
illustrated in Table I. Thus not even two complete net-
work analyses are required to compute the gradient.

Now in (8) we must compute d¢/dg; for each component,
This is accomplished as illustrated in Fig. 1. Fig. 1(a)
illustrates the circuit for which the transducer gain must
be computed and optimized, and Fig. 1(b) represents its
adjoint where from (8) we see that it is necessary to
choose

8RB, Vo*
RL IV'm|2

I = W{jw)|Gr — Gré|?2(Gr — Gr?) (10)

TABLE I
FirsT-ORDER SENSITIVITY WITH REsPECT TO COMPONENT VARIA-
TI0NS ExPRESSED IN TERMS oF THE ORIGINAL NETWORK AND
THE ADJOINT NETWORK VOLTAGES

Element Vg Ag_Component
C
k | N
o4} WYy gViey 46
Capacitor
K R | ,
WO a
-V, WV, /R AR
Resistor | 32837
k - | 2
v, V2 ot AL

Inductor 22 34

Iy a .2
K Zy WyegVia/ZoteBEy 8z,
Lossless N )
| Short - Stub Jﬁvklvu/zosm Ezl AL

Y
Zo

2
-3V, Vg E8BR, /2 bz,
Laossless
Open - Stub
2
v, y? 2
38 klvulzocos B4, 8ty
a a ;.2 a2 2
1WAV /2. t8BL -3 (V VY ) /7 s10BE Az

t
k : i
7, |Lossless
0 [Series
Line

a, a 2 2, a
3 (Vkvk+vevl)s/zosm le 3 <Vkvz+vkvl;)5/20““3“5“1 M]
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Fig. 1. (a) Computation of transducer gain. (b) Adjoint network
for transducer gain.

Remember that the admittance matrix of the adjoint
network is just the transpose of the admittance matrix
for the original cireuit in Fig. 1(a). Note that to compute
the gradient we simply compute the node \;olta‘ges of the
original network and the adjoint network and sum the

element is a lossless shorted stub, then the gradient of the
error function with respect to the length of the stub is

0 . .
* - > Re {jBVriVii®/2 sin? gli}

11
ah (11a)

where [y is the length of the lossless shorted stub connected
between nodes & and [, and for a capacitor C connected
between nodes k and [

Je

— = Z Re {jkalez"’}

30 2 (11b)

ete.

STABILITY

Typically, the stability of a microwave active network
is determined by Rollet’s conditions [177]. For a one-port
network with driving-point impedance Z (s), the conditions
for short-circuit stability are: 1) the poles of Z(s) are in
the left-half plane (LHP); and 2) Re Z( jw) > 0 for all w.

The problem is that most designetrs neglect condition
1); an omission which can result in erroneous conclusions.
For example, consider the circuit in Fig. 2 which consists
of a generator with resistor R, connected to a negative
resistor with parasitic inductance and capacitance. The
driving-point impedance for this circuit is given by

$2RLC + s(RR,C — L) + R — R,
sRC — 1 )

Z(s) = (12)

Clearly, the circuit is unstable [zeros of Z(s) in the right-
half plane (RHP)7] if B, > R, but under this condition

i1
1

Eg

O

Fig. 2. Negative resistance circuit.
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—R

Re {Z(jw)} :Ry—l_l—l——wRC);>

0 (13)
for all w. Obviously, condition 1) above is not a valid test
when condition 2) is not satisfied.

Similarly, a two-port network terminated at one-port
In a passive load is said to be stable provided [17]:
a) the poles of the two-port parameters lie in the LHP,
e.g., in the case of the short-circuit admittance param-
eters this implies that the two-port is short-circuit sta-
ble; and b) the real part of the immittance looking in
at the unterminated port is positive for all w with the
other port terminated in a given passive impedance.

Again, the designer always assumes condition a) is
satisfied and only checks b). In the case of the scattering
parameters, condition a) is equivalent to the requirement
that the network be stable when terminated in the port
normalization resistors, and condition b) is equivalent to
the requirement that the reflection coefficient be less than
one at one-port with the other port terminated in the
given passive load.

Due to the difficulty in checking condition a) it was
decided to use a stability criterion based on Bode’s feed-
back theory and the Nyquist criterion. The denominator
of the transfer function can be expressed in the form

D(s) = Di(s) + y(s)Da(s) (14)

where y(s) is some admittance parameter. Bode [18]
defines the return difference as

: D
F(s) = Dl((sz) =14 T(s) (15)

where
T(s) = y(s) gﬁg (16)

is called the return ratio. The number of times that the
Nyquist diagram of 7T'(jw) encircles the point (—1,0) in
the clockwise direction is equal to (Zr — Pr) where Z»
is the number of zeros of F(s) in the RHP (poles of the
transfer function) and Pr denotes the roots of Dy(s)
and the poles of y(s) #n the RHP. Usually the designer can
choose the parameter y(s) such that there is reasonable
assurance that Pr = 0. Thus if Pr = 0 (the circuit is
stable with y(s) = 0 and y(s) does not have any poles
in the RHP), then the circuit is unstable if the Nyquist
diagram encircles or passes through the point (—1,0) in
the clockwise direction. Desoer [26] has shown that the
Nyquist diagram is applicable to distributed systems under
some very general conditions.

Finally, the computation of T(jw) is very straight-
forward [ 18] as illustrated in Figs. 3 and 4. In Fig. 3(a)
the admittance y(s) is a driving-point admittance. To
compute 7' (jw) with respect to this element, we simply
set all independent sources to zero and replace y(s) by the
current generator y(jw) in Fig. 3(b), then 7T(jw) =
Vi (Jw). In Fig. 4(a) the admittance parameter represents
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y(iw)

y(s) s .
iy i i i
AT Vi Vi
N N
Independent
Sources=0
(a) (b)

Fig. 3. Return ratio with respect to an admittance y(jw).

Vo s y(s)Vu_ Vo yeliw)
k+_?l T—<—>>—Tp . k? «Tn rC" )—-Tq
N N
Independent
Sources =0
(a} (b}
Fig. 4. Return ratio with respect to a voltage-controlled current
source.

a, voltage-controlled current source. Again, the independ-
ent sources are set equal to zero and the controlled sources
are replaced by a current generator y(jw) as shown in
Fig. 4(b). Now, the return ratio 7 (jw) = Vii(jw), the
voltage difference which controls the dependent current
source. Thus it is a simple matter to generate the Nyquist
diagram with respect to a given admittance parameter
in the ecircuit.

DzescrirTiON OF THE PrROGRAM

The basic flow chart of capmic is shown in Fig. 5. One
of the most powerful features of capmic is the free format
specifications. This is accomplished by subroutine REaAD
whose operation is based on the use of three ¥uNcrion
subprograms; the first one interprets a number read under
an 80A1 format, the second obtains the character type,

Data

Read

Check Data for Errors
and Print Data

v

{Pointers System}
Sparse Technique

AC Analysis
Yes
Real Gradient Vector

No Error Function <e
or Max. Iteration

Error Minimization
Technique

Yes
Constraints Parameters
ore Imposed

Final Analysis and Print

Fig. 5. Flow chart of capmic.
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and the last checks delimiters, i.e., slash, comma, ete.
Also, at subroutine rREAD, cards containing errors are
detected and printed out with the type and location of the
errors. Subroutine cHECK and PRINT, insures that the
frequency points for analysis agree with the frequency
data points of transistor, desired response, ete. It also
does not accept a zero value for the nominal value of an
element. The first part of the subroutine sparse checks
that the number of nodes does not exceed 100; also, singu-
lar nodes (nodes on which fewer than two branches ter-
minate) are identified and printed. The second part of
subroutine sparse renumbers the nodes and sets up sparse-
matrix indicators. )

The analysis-gradient subroutine is deseribed in some
detail in Fig. 6. Observe that before entering this sub-
routine, the pointer system was set up without numerical
values. The analysis-gradient routine is executed for each
frequency with the numerical values of the parameters
of the circuit.

The program is written in Fortran TV with a length of
nearly 2400 Fortran statements. capmic is loaded on the
Sigma 5 computer by using overlay. capmic requires less
than 20 000 words of core storage, and uses single preci-
sion. It can handle 100 nodes, 250 parameter values of the
following kind of components: resistors, capacitors, induc-
tors, complex impedance; series lossless transmission
lines, opened and shorted lossless stubs desecribed by their
lengths and charscteristic impedances; 13 voltage-con-
trolled current sources; 21 three-terminal devices with a
common reference node, such as circulators and transis-
tors; current sources, and grounded voltage sources. The
above elements are keyed in the program as R, C, L, Z,
U, 0,8, GM, Q, I, and V, respectively.

CADMIC 18 easv to use since it contains a “free-format”

Start
Ophimization No
Yes Requested?

Define Parameters
to be Qptumized
Update Porameters Clear Complex Gradient
Vatues for Analysis Vector fo Zero and

Intate Indicators

[ Tncrement Frequency

| ond Clear Arrays to Zero lé
l Solve Oniginal
[Bund Complex Admittance Network, YU=1
Yes No ~
<5< (m,.t;t_—“e‘___““f_omnmizuhon Reguested?
\l/ Jlr Yes Output, Gr Mo,
Build Error Function
ond Clear Adjoint Vectors
Solve ' Adjoint Network
ya'y=go°

‘Bulld Complex Gradient Vector

| First Call? JYes

If Optimization is
Requested, Get Real
Gradient Vector

1

Reset Source and
tood Impedonce
Indicators

Fig. 6. Flow chart of the ANALYSIS-GRADIENT subroutine.

for each Perameter

313

input similar to that used by Jenking and Fan {237]. The
first card of the data deck is the title card and the last one
is an end card. The cards between them can be arbitrarily
ordered. Table II illustrates how easy circuit data can
be supplied. Columns 1-4 must contain an element name
of up to four characters. «“ A” stands for any alphanumerie
character. Thus elements can be described with a mean-
ingful name, ie., R102, COUT, LIN. The numbers of
the nodes between which the element is connected are
N1 and N2; NG stands for ground node, and NCON is
the controlling node for the VCCS’s named GMAA’s.
Node numbers must be integers and all data fields must be
separated by one or more blanks.

LB and UB are the lower and upper bounds specified
when the element value is to be optimized; a zero value
in the first LB field on the card is an instruetion to the
program not to optimize that parameter. The first LB
and UB fields must not be left blank for distributed
elements, or the program will interpret Z, as LB or UB.
For transmission lines and stubs, default values for the
bounds are supplied by the program if a slash is substituted
for the LB or UB. The default lower bounds are 1° and
10 @ and the upper bounds are 179° and 125 Q for electric
length and characteristic impedance, respectively. EL 1s
the normalized electric length of the transmission lines
and stubs; the actual length [ is given by

I = BL/[ 27 (ue) 2. ] a7

where f. is the normalized frequency. Thus EL = /2
is one-quarter wavelength at the frequeney f.. The per-
mitivity of a medium may be defined as ¢ = &€, Where

TABLE II
Inrur DATA INFORMATION

RAAA Nl N2 VAIUE LB uB

CAAA NL N2 VALYE 1B UB

LAAA .19 N2 VALUE 1B UB

ZAAA ForV N1 N2 ReZ ImZ ReZ ImZ

OAAA N1 N2 EL 1B UB Zo 18 UB
SAAA N1 N2 EL B uB 2, 1B UB
UASA NL N2 NG EL 1B UB Zy 1B UB
EFS VALUE

GMAA Nl N2 NCON

QAAA  DAAA Nl Nz "R

DAAA Y or § 511 /si1 812 1812 s21 /§21 822 /822
VARA N+ juitd VALUE

IAAA B+ N~ VALUE

vour N+ N~

6TR NS NS2 NL1 2

RFC NS1 Ns2

OPT lor2 IFRINT

¥RE FNOR F(L FZY . - . .

+ F(N-2) TF(N-1) P(N)

WFU 4 Forv WL WEy . . . . W@

RDE ForvVv VALUE (1) VALDE(2). . . VALE®)

STAB I+ 1- v+ v-

END
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TABLE III
ABBREVIATIONS ALLOWED FOR INPUTTING DATA VALUES

b4 for

N

1=

=

1E-12
1E-09
1E-06
1E-03
1E+03
1E+06

1E+09

Transistor

2N2445

Ly

Intial 06 500 [¢]3]

Final 2012

500

8676 0976 9757 0833

06 06 508

1250 0927 1320

Fig. 7. Broad-band amplifier with complex antenna load.

is the permitivity of free space and e is the relative per-
mitivity. In case e is different from 1, a card EPS with
the value of ¢ is introduced. Z, is the characteristic im-
pedance of the line. On the complex impedance card
ZAAA, F indicates that the impedance is constant with
respect to frequency and only the real and imaginary
values of Z are supplied; otherwise, values for each fre-
quency must be specified, and a V instead of an F must be
declared. - f

"The card Q defines a three-terminal device such as a
transistor or circulator and DAAA denotes its data field.
NR is the common reference node. The card DAAA gives
a data set in scattering or admittance parameters for each
frequency; one set per card is allowed. Continuation cards
specified by the symbol + in column 1 can be used as
necessary. For current sources, N+ and N — denote that
the current flows from N+ to N —. The output specifica~
tion cards are VOUT, RFC, and GTR for output voltage,
reflection coefficient, and transducer power gain, respec-
tively. NS1 and NS2 are the nodes associated with the
source impedanee and NL1 and NL2 with the load im-
pedance. In card VOUT, N+ and N — are the positive
and negative nodes, respectively. The frequency card FRE
specifies fu, defined in (17) and the f_reqilencies for which
the circuit is to be optimized or analyzed. The OPT card
is used when optimization is required; a 1 for Fletcher—
Powell algorithm and 2 for Fletcher is specified in the
second field. If 1 PrINT = 1 the error function will be
printed at each iteration, only the final error function
will be printed if 1 prINT = 0. Also, the weighting function
card WFU and the desired response must accompany the

OPT ecard. In card WFU, the second field shows p, de-
fined in (5). The weighting function can be constant over
the frequency band, indicated by an F in the next field
in which case only one value need be specified. If variable,
a V in the third field is used and a value for each frequency
must be specified. The card RDE is very similar to WFU,;
the value or values are specified at each frequency for the
magnitude (not in decibels) of the transducer power gain
or the reflection coefficient. The card STAB is used when
a stability check of the circuit is desired. /4+ and I—
denote the nodes where the current source is connected.
The program automatically sets the current source equal
to the value of the admittance which was initially con-
nected between those nodes. The return ratio is the voltage
between nodes V4 and V—. For the case of a stability
check with respect to the short-circuit forward-transfer
admittance of a three-terminal device, set I4 = N2,
I— =N1, V+ = N1, and V— = NR. Engineering
abbreviations to describe noninteger values in this pro-
gram are shown in Table ITI. The END card must contain
letters END in columns 1-3, columns 4-80 may contain
any comment.

AN ExampLE

As an example, the broad-band amplifier with a complex
antenna load shown in Fig. 7 is given. The problem is to
obtain a flat response in the 150-300-MHz band. The
listing of the input data and output results are given in
Fig. 8(a) and (b). The design obtained has less ripple
than the one obtained by Mokari-Bolhassan and Trick
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LA AL EL ISR 2T 2 TR TR YR grgvpvgvgvpvgn
* *
* C A D M I ¢ .
* - »
FEPFRIFFUNRAR N RSN R AN SR AR SRR RN RN RN
BROAD = BAND AMPLIFIER WITH COMPLEX ANTENNA LOAD
GTR 5 & 10
OPT 1 1
RDE F 10.0
V6 5 0 100
RS 5 4 50,
WFU 12 F 0+00006
UL 4 30 6 /7 50 //
S2 30 6 // 50 7 132
U3 21 0 0¢6 7/ 50 47
S4 1 0 6 // 50 7/ 132
9 p32o
D +39812 =78:4075 +0499625 67+0273 4+2535 137¢8 +838804 «+1002E402
* 036942 =81¢1241 0518854 6746859 4.00991 105,48 <8346 =9.9702
* +332181 83443 4538516Em01 68.1986 +37919E401 102.65 <8304 =9+91608
* ¢30088 «85+61 0557857 68477 3459918 10041 +828263 =9.87173
+ +2B017 =B7.9546 0578 681934 344464 98435 182622 =9.87324
+ +263 =90, *06 68+8186 3429997 96427 +822 w9.8404
* 1259 268+23 +06224 68+71 3016 94«54 +819 =9.81
+ +2523 267004 +064365 6847771 300353 93+4 «B1477 m94751
+ 424573 26556 +0664831 68483 2492207 92¢16 810745 =9.76439
+ *2391 264048 «06892 6340525 28202 90482 +808605 =9¢7186
+ 2231698 263405 +0705 694409 2e74 90+« +805563 =9,71957
¥ 4222315 2614724 07245 6948142 2467047 B8¢9272 ¢B03423 =9.67335
* 42132 260407 +0734577 69493 2459193 87.7889 799312 =9«6508
+ «2041 258¢41 20744 7042 24504 86479 +7971 9,57
+  «1950 256496 +0753061 7045304 2¢4566 B85+798 +793883 =9.49792
* +18629 255406 +7B1089E=01 7143331 2441006 8447625 791664 =9.41473
FRE +23G ¢15G <166 *17G +18G #19G ¢26 ¢21G +22G +23G «24G «25G
+ 2266  «R7G 928G 429G 036
IL v 10 Beb 5245 10+ 56¢5 13+ 62+ 16+ 6Bs 200 75 25 8 . .
* 40+ 100+ 56+ 109, 70+ 115+ 9245 120s 120+  120. 152,2 110? 32:5 9215
+ 175, 85 190+ 55, 195« 154 T
END
(a)
BROAD » BAND AMPLIFIER WITH COBMPLEX ANTENNA LBAD
GTR 5 4
FREQUENCY GAIN ERROR FWNCT+
HZ DECIBEL MAGNITUDE
1¢5000E 08 9.5963E 00 9+1124E 00 1+19551356=06
1+6000E 08 1+0283E 01 1+0674E 01 1.2398150E=06
1+7000E 08 1+0365€ 01 1+0878E 01 2+2872564E=06
1+8000E 08 1+,0192E 01 140453E 01 292876311E=06
1+9000E 08 1+0108E 01 140252€ 01 202876311E=06
2+0000E 08 9+9967€ 00 999925E 00 2¢2876311E=06
2+1000E 08 1:0044E 01 140101E 01 2¢2876311E=06
2¢2000E 08 1+0040E 01 1+0093E 01 2¢2876311E%06
2¢3000E 08 1+0243€ 01 140576E 01 242942522E%06
2+ 4000E 08 1+0333€ 01 1+0798E 01 2+ 6253520E=06
2+5000€ 08 1.0359E 01 1+0862E 01 3+4613040E=06
2+6000E 08 1.0286E 01 1»0680E 01 3+5098983E=06
2¢7000E 08 1.0054E 01 1:0126E 01 3,5098983E=06
2+ 8000E 08 9+7725€ 00 9, 4897E 00 3+5114654E=06
2+¢9000E 08 954776 00 9:0109E 00 7+8929643E=06
3.0000E 08 9+2892E 00 844902E 00 7+0945336E=04
ERROR FUNCTION =  +7094534E03
PARAMETER VALUES +97605E 00 +97573E 02 +92750E 00 +13200E 03 +20115E 01 «86759E 02 +83297E 00 +12500E 03

©)
Fig. 8. (a) Listing of input data. (b) Listing of the output results.

[167]. The ripple was reduced over the frequency band by
using p = 12 [refer to (5)]. The Fletcher—Powell algo-
rithm was twice restarted. In Fig. 9(a) only the initial
gain and the optimized one are shown. The stability of
this circuit was checked by plotting the magnitude and
phase of the return ratio with respect to yx(jw) of the
transistor [see Fig. 9(b)]. Fig. 9(b) indicates that the
circuit is stable by a wide margin in the frequency range
over which the analysis was performed. One should also
model the circuit and compute the return difference at
frequencies outside this band.

CoNcLUSION

capMic 1s a versatile program able to deal with ac
analysis and optimization of general topologies. It in-
corporates a number of recent advances such as the use
of sparse-matrix storage and computation techniques, the
adjoint network approach for evaluating the gradient
vector of suitable performance indices related to network
responses. Also, a Nyquist stability criterion has been
implemented in the program which offers more flexibility
than the negative input resistance criterion used in some
microwave programs. '
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Fig. 9. (a) Transducer power gain versus frequency. (b) Return
' ratio for ys1(jow) of transistor 2N2415.

The description of very complex topologies to capmic
can be supplied in an effortless manner. It is not required
to redraw the circuit or decompose it. Meaningful mne-
monic abbreviations are used for the input data allowing
the user to describe his circuit in a simple, concise, and
significant way.

The example given in this paper was chosen mainly to
illustrate the design techniques, although ecircuits with
more involved topologies have been run successfully with
capmic [ 277]. Research is continuing on the development
and documentation of this program and its comparison
with other analysis techniques with respect to speed and
accuracy. When the topology is restricted and the network
is small, capMic is not expected to be faster than some of
the current smaller programs for microwave circuit anal-
ysis. However, there is a definite trend toward sparse-
matrix techniques for the analysis of large networks

[207, [28].
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